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The existence of sequences of orthogonal polynomials on Ihe unit circle whose
zeros are everywbere dense in Izi ,,; I is proved. © 1988 Academic Press, Inc.

P. Tunin asked in [5, p. 68-69] whether there is a system of orthogonal
polynomials on the unit circle such that the zeros of the polynomials are
everywhere dense in Izi ~ 1. Szabados in [4, Theorem 7, p.209] gave a
partial answer. He proved that, given an arbitrary e > 0, there exists a
weight-function f such that the two-dimensional Lebesgue measure of the
set of cluster points of the zeros of the orthonormal polynomials with
respect to f is greater than 1t - e,

The problem raised by Turim admits an affirmative answer as we show.
We denote D = {z E c: Izi < I}; [j is the closure of D, and T is the boun
dary of D.

LEMMA 1. Let {tPh(Z)}h:~ be a finite sequence of orthogonal monic
polynomials on T and (X E C with lexl < 1. Then there exists only one monic
polynomial tPn(z) such that {tPh(Z)}~~O is orthogonal on T and tPn(CX) =0.

Proof Let cp: be defined by cp:(z) = znq.Uljz). Because tPn(z) must
satisfy the recurrence formula

([2, Formula 8.1, p.155]) we need only determine an-I- Since tPn(tt)=O,
we have

and thus, the recurrence coefficient is obtained.
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From the ChristofTel-Darboux formula ([2, Formula 1.7, p.8) we
deduce

and so, therefore

Because lal < 1, it follows that

which guarantees that an _ 1 is the coefficient we were looking for.

One can see another proof of this result in [1].
Lemma 1 implies:

LEMMA 2. Let {an };,"'=l be a sequence of complex with lanl < 1,
n = 1, 2, .... Then there exists only one family {~n(z)};,"'= 0 of monic
orthogonal polynomials on T such that ~o(z)= 1 and ~Aan)=O, n~ 1.

Lemma 2 assures that if we choose {an}:~ 1 dense in a closed subset F of
D, the closure of the zeros of {~n(z)};,"'=o contains F.

Because there is only one finite positive Borel measure associated with
every sequence of orthogonal polynomials {~n(z)}:=o ([2, Theorem 8.1,
p. 156]) we obtain:

PROPOSITION. There exist measures djJ. on T such that the zeros of the
orthogonal polynomials associated with djJ. are everywhere dense in D.

Finally, we want to point out that Lemma 2 assures that orthogonal
polynomials on the unit circle are completely determined by some of their
zeros. In [3], a similar result for orthogonal polynomials on the real line is
proved. There, a connection between orthogonal polynomials, their zeros,
and their recurrence coefficients is, besides, revealed.

One can also see another proof of the above result of Nevai-Totik
in [6].
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